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THE SYNCHRONIZATION OF OSCILLATORS WHICH INTERACT VIA A MEDIUM* 

E.E. SHNOL 

A system of N non-linear oscilators which influence one another only as 
aresultof their action on a common medium, is considered. The stability 
of the synchronized or partially synchronized periodic oscillations in 
the system is discussed. Special attention is paid to the case when 
N*_)4. The problem of the synchronization of such oscillators, which do 
not interact directly but only indirectly via a common medium, is not 
new /l, 2/. It is usually assumed that the interaction is weak, so 
that the oscillators only slightly change their frequency and shape, 
The term "synchronization'* usually means one of two effects: 1) the 
establishment of identical oscillations (in shape and phase) in a system 
of identical oscillators, 2) the establishment of a common period of 
oscillation in a system of identical or structurally similar oscillators. 
Biological problems which lead to a synchronization problem are considered 
in /3, 41. 

1, The system and special features of the problem. We consider N objects of 
the same nature which have a stable selfexcited oscillatory mode in a band of fixed external 
conditions. The objects (oscillators) are located in a medium which they influence and 
thereby influence one another. We assume that the action of the oscillators on the medium 
is additive. 

In biological applications, the number N of objects is usually very large, and the 
influence of one oscillator on the medium is very small. For instance, if we are speaking of 
the biological oscillations inherent in a living cell, the action of an individual cell on 
the medium is proportional to the ratio of the cell volume v to the volume V of the medium 
in which there are no cells. 

In the elementary case of identical oscillators, the equations describing the system can 
be written as (the dot denotes differentiation with respect to time t) 

g (St xk); 5k*=h(S,5p); k=i,...,N 
k=l 

g (s, z) = go) (s) + yg(” (s, x), y = NUN (1.2) 

Here, the vector s refers to the medium and x to the oscillators (in general, dimsf 
dimx), g'*)(s) describes the change in the medium regardless of its "filling", and &?(s,z) is 
the influence of the oscillators on the medium. It is assumed below that (given a fixed 
"density" y,) g&z) is independent of N. 

In biological (as distinct from technical) applications, synchronization is usually of 
interest when it sets in rapidly (in a fairly small number of periods) and is preserved when 

*Prikl.Matem.Mekhsn.,51,1,15-20,1987 
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the oscillator parameters differ substantially. This is possible provided that the interaction 
is not excessively weak. In particular, the oscillations of the global variable s must have 
significant amplitude (this condition is only necessary ; it is also necessarythattheoscillators 
be "sensitive" to oscillations of s). 

To sum up, our problem has the following features: 1) the number N of oscillators is very 
large and we are only interested in mathematical assertions that remain (or become) meaningful 
as N-+ m; 2) the interaction of the oscillations is not assumed to be weak. 

In the case of strong interaction, individuality is largely lost. In particular, for 
sufficiently large y, system (1.1) may not have periodic solutions. Clearly, not many general 
assertions can be made about system (1.1). 

2. Elementary periodic modes in a system of identical oscillators. men 
all the x{,(t) are the same, the solutions of system (1.1) can be found from the equations 

s' = g (s, X), X‘ = h (5, X) (2.1) 

The periodic solutions z" (t) = (so (t); X" (t), . . ., X"(t)) of system (1.1) will be called 
synchronous, and the set of solutions which differ only by a phase shift (correspond to the 
same trajectory), a synchronous mode. 

The system of oscillators can be divided into a small number m of interior synchronous 
subsystems. For the most interesting case m=2 

x1 (t) = X, (t), 1 < i < N,; x1 (t) = Xz (t), A', < j < N (2.2) 

Then, s (t), X, (0, and X,(t) satisfy the system 

s' = Bg (s, X,) + (1 - B) g (8, X,), 8 = N,iN (2.3) 
x, = h (s, X,), x; = h (S, X,) 

The periodic solutions of a system (1.1) of type (2.2) will be called two-component. 

Note 1. There are usually only a few synchronous modes (most commonly, only one). The 
two-component modes as a rule form a family which depends on the parameter b: system (2.3) 
usually has periodic solution (s"(~),X~~@), X,"(t)) for the range of f! values: PI < fi < BB. As 
N-CU, the number of admissible @ (= k/N) increases without limit. 

Below, in Sects.3~5, the term "stability" signifies "asymptotic orbital stability with 
respect to the linear approximation." 

3. !&mnnary of results. Assertion 1. The necessary and sufficient condition for the 
synchronous mode in system (1.1) to be stable for any N> i is that it be stable for N = 2. 

Assertion 2. If the synchronous mode is stable, the size of its domain of attraction & 
is independent of N. (More precisely, the internal diameter of Q does not tend to zero as 
N-+00.) 

For large N, the usual definitions of stability "with respect to the initial data" become 
insufficient. Clearly, any initial (at t= 0) deviation of a small number of components 
(oscillators) is a weak effect for the system as a whole. On allowing such deviations, we 
obtain: 

Assertion 3. If the synchronous periodic solution in system (1.1) is stable, it is stable 
in the wider sense (see the definition in Sect.5). 

we shall now consider a more realistic problem. Let the oscillators differ somewhat, 
while having the same nature. 

Assertion 4. Letsystem (1.1) haveastable synchronousmode 1". Then, there exists 6> 0, 
independent of N, such that any similar system 

II gt - g II 1 d 6 Ijk~-kll,<6, k=l,...,N 

has a stable periodic mode 1, close to 1". Here* llFI/ 1 is the norm in C', i.e., (in the 
natural notation) 

11 F (s, z)ljl = max (IF 1 -t IG'/8s 1 + 1 aFiax[) 

Assertions 1 and 3 are proved below; see Sect.6 concerning Assertions 2 and 4. 

4, The stability of the synchronous mode. Our interest is in reasonably strong 
(exponential) stability, provided by the linear approximation. Here, as is always the case 
for periodic solutions of autonomous systems , we are talking of a tendency to an undisturbed 
trajectory, i.e., of orbital stability. 

Theorem 1. The necessary and sufficient conditions for a periodic solution z" ($)= (s'(t); 
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X” (t), . . ., X'(t)) of system (1.1) to be asymptotically orbitally stable with respect to the 
linear approximation for any N> i are: 

a) stability (in the same sense) of the solution (~'(~),X'(~))of system (2.1) (i.e., of 
system (1.1) with N = 1); 

b) asymptotic stability with respect to the linear approximation of the solution X =X’(t) 
of the non-autonomous system 

X' = h (8 (t), X) (4.1) 

Proof. On linearizing system (1.1) in the solution z"(t)and putting PJ=(XQ)/N,& = zg - 
y, we obtain 

s' = a (t) s -I- b (t) y, Y' = p (t) s i- q (t) Y (4.2) 

Eh-' = q(t) Sk (4.3) 

System (4.2) is formally the same as the linearization of the "one-particle" system 
(2.11, while system (4.3) is the result of linearizing system (4.1). By condition a), any 
solution of system (4.2) has the form 

s (t) = es- (t) -I- 2, @), y(t) = CX’” (t) + f-2 @I (4.4) 

I r, (t) I 6 C,e-ar, I r2 0) I d C,e*a”, a > 0 

(Is I and 1x 1 are fixed norms in spaces 8 and x respectively, and the constants c, G,C* 
depend on the chosen solution). 

By condition b), for any solution of system (4.3) we have 

I E (4 I < CZP’ (4.5) 
Hence, for any solution of system (l.l), 

s (t) = Cs’” (t) + R,, zI( (t) = CX’” (t) + Rh., [ RI (t)f < Be-*” (4.6) 
Eqs.(4.6) mean that the solution z"(t) of system (1.1) is asymptotically orbitally stable 

with respect to the linear approximation. The sufficiency is proved. 
The proof of necessity is just as simple: from (4.6) there follow (4.5) and (4.4) for 

8, III ft which formally represent the conditions of the theorem. 

Note 2. Assertion 1 of Sect.3 follows obviously from Theorem 1. 

Note 3. (see Assertion 2 of Sect.3). In the conditions of Theorem 1, there exists 6.. 
independent of N, such that, with 

6 <h., tS (0) - 8 (0) I< 6, 1 zk (0) - x0 (0) 1 < 6 

we have the inequalities 

i 8 (il - 8 (f + 1) I < 3&e*, I~~(t)-X”(tf+)/~B6L-=‘,k=1,...,N 

The analogue of Theorem 1 for the two-component mode is: 

Theorem la. The necessary and. sufficient conditions for stability of a periodic solution 
of type (2.2) of system (1.1) with any ,Nl> 1 and NI = N - N,> i are: a) stability of the 
solution (s'(t), X,‘(t), X,“(t)) of system (2.3); b) asymptotic stability with respect to the 
linear approximation of peridic solutions X,*(t) and X,"(t) of system (4.1). 

5. Stability of the synchronous mode in the wider sense. Definition 1. A 
synchronous (of period T) solution z"(t) of system (1.1) (8 = so (t),sR = X"(t);k = 1,..,N)i.s N- 
stable if, given any e> 0, there exists S>O (independent of N) with the following 
properties. Let I s (0) - so (0) I < 6, I zk (0) - X” (0) I < 8 for k B v, v 2 N (1 - 6). Then, in 
any interval (t,, t, -+ T), for the solution 2 (t) I s (t) - so (t + T) I < e, I Sk (t) - X” (t f f) I < e, 
k = 1, . . ., v. 

Cdmmentary. lo. Nothing is said in the definition about variables zk with k>v: they can 
be strongly varied at t-0 and varied to some-extent for #>O. 

2O. It is not essential. to consider time intervals equal to the period of oscillation; 
we can choose any (fixed) T. 

3O. Note that r depends on t, as well as on the solution r(t). 

Theorem 2. Let jg(s,z)I<B (for al.1 s and x) and let the synchronous periodic solution 
z"(t) of system (1.1) be asymptotically orbitally stable with respect to the linear approxi- 
mation. Then, this solution is also stable in the sense of definition 1. 

The proof is based on the following lemma, which we quote without proof. 

Lemma. Under the hypotheses of the theorem, there exists a Lyapunov function L(Z) which 
satisfies, for p(z)<M, the following estimates with constants, independent of N: 
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Here, P(z) is the distance 
of the norm 

from point z to 

Notice that any stable (in 

/( z I( =I mar (1 s j; 

the same sense) 

the closed trajectory I= {z"(t)} in the sense 

I “1 I, . . ,, I zsl) (5.2) 

periodic solution z(t) of a system admits of 
a Lyapunov function with estimates (5.1). The significance of the lemma is that, for system 
(l.l), the constants c,,C,, C,,M are independent of N. 

Proof of Theorem 2. A system 71.11 for n objects will be called a system S,. We specify 
6 > 0 and v > N (1 - 6). We put z = (s; q, . . ., xN), i = (s; x,, . . ., a+). On a solution of system 
shr the variables .s and z& with kQv satisfy thd equations 

v 

$=’ 
Y c g(s,q.)+r(t), ~k’=h(s,~h.)r k-=l,...,v 

L(=1 

While the remainder term r(t) depends on the chosen solution, we always have 
LetL(c)be the Lyapunov function of the lemma for system S,. On evaluating 

derivative of L in the light of system SN (or what amounts to the same thing, in 
of system (5.3)), we obtain 

(5.3) 

[ r (t) 1 < 286. 
the 
the light 

L’Jsx=L’/q, + -gr(t)< - P(5) + GA6 G=2C1B) 

Here, P(Qis the distance of point 5 to the periodic solution c"(t) of system S, (s = s”(t), 
xk = X” (t), k = 1, . . ., Y). 

Hence, L'<O for c,6<p(~)<M, or 

L' 1~5.3) < 0 for C$ Q L < Ml (C, = CL&Z, ~II = Ci$f) (5.4) 

We choose the initial pointz(0) for the solution of system S,v in such a way that 11 c(O)- 
5" (0)II =G 6; then, p(5(0))<6, L(5(O))I<CJ. BY (5.41, L(5(t))<CC,6 for all t>O (C,=max 
(C,, c,)) and p (5 (t))< Cab, C, = C,/c,. We fix t,; for some z, we have II 5 @*) - 5" (t* + T)lI< 
C,& To estimate w (t) = 5 (t) - 5” (t + z) f or t*< t< t, + T, we note that G(t) and 6"(t) satisfy 
system (5.3) (g(t) with some r(t), and r(t) with r(t)= 0). As usual, 

w' = A (t) w -I- R (t), 11 B @)I/ \< max II dfidtll = f), 

Here, f(c)is the right-hand side of system S,, the matrix norm corresponds to the vector norm 
(5.21, and the maximum is taken over a bounded domain which contains the domain p(I;)<M. 

For system SN D is independent of n. Hence it follows that IIzu (t)i(< C86 for t, < t < 
t, + T, or I s(t) - so (t f $16 Cs6, I .q (t) - X” (t + a) j < Cab, k = 1, . . ., Y (C, depends on T, but 
is independent of N), 

II-I short, we can choose 6 = e/Cc, the theorem is proved. 

6. Addenda and notes. lo. For small Y (see (1.1)) the oscillators interact weakly, 
and the theorems originating from Poincarg come into effect (see the references in /l, 2/). 
We assume that a) the system s'=g ("'(s) has an asymptotically stable equilibrium position s.; 
b) the system z'= h(s,,s) has an asymptotically stable limiting cycle 2. The?, with Y<fr 
there exists in system (1.1) a synchronous mode (in which s(t) is close to s*, while (50)) 
is close to I; and there exists a two-component mode (2.2) or period T, for which N, = N/2, 
x, @) = x, (t-t_ T/Z). Both these modes may be stable or unstable. Notice that, with 0 = '/y , x1 (f) 
and X,@)come to be significantly diffetent (while if 8#'/~, their diference becomes essential). 

2O. Assertions 2 and 4 of Sect.3 (r)nd the lermna of Sect.5) differ from the standard 
assertions only in the fact that they are independent of N and the fact that no new ideas 
are needed for their proof. The usual proofs for system z'=f(z) (see e.g., /5/I serve the 
purpose if we use the fact that, for system (1.1): 

a) @df (5) /I = /I 2 Waq) ?iji!< C, 11 El1 (in the same way as for &J 
b) for the general solution Z= @(t,Q (O,(O,Q= 1) 

II ‘t@ II = II z (a@/aS,) 5j j/ Q B, II 5 II (similarly for dW) 

Here,Ck and Bk are independent of N if the norm (5.2) is used. 
3O. W&shall explain what has been said by taking the example of an analogue of Assertion 

2 for a (simpler) case of equilibrium position. 

Theorem. Let z* = (s*: x,, . . ., X,) be a symmetric equilibrium position of system (l-l), 
which is asymptotically stable with respect to the linear approximation. Then, with fJzfO)- 
%li<s 

n 2 (4 - z* II G B II 2 (0) - Zt II .-at, a>0 

(6, a and B are independent of N). 
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Sketch of the proof. Let Z. = 0. We write system (1.1) as (see Sect.4) 

8' = a.~ + by + r, (d, Zk' = PS + QZk + rk (2) 

or Z' = AZ f R (z), I/R II< C,/Z[~. By hypothesis, the eigenvalues of the matrices q and 
ab 
n II PQ 

satisfy 

the inequality Reh<- a<O. Hence exp (tA) II< C exp (-at) (C is independent of N). After this, 
from the identity 

z(t) = elAz (0) + i c-(~-~)~R (Z(T)) dT 

0 

we obtain 11~ (t) II < ZCI~z(O)~~exp(-at) for IIz(O)ll< 6, (6, depends on Cz but not on N) . 
4O. With N>i, the removal (or addition) of a few oscillators represents a small 

disturbance of the system. The stability of such an operation, which changes the dimension- 
ality of the system phase space, is not usually considered in the theory of differential 
equations. We maintain this custom in Sect.5, though in essence Theorem 2 remains valid in 
such cases. 

5O. An analogoue of Theorem 2 holds for two-component modes. These make an explicit 
appearance as an entire family. A strong initial deviation of a few oscillators can transfer 
them from one subsystem to another; a small disturbance b is a special case of what is 
allowed by Theorem 2. 

6O. Instead of Definition 1 of Sect.5 we can use the following more traditional-sounding 
definition: 

Definition 2. The synchronous solution a'(t) of system (1.1) is N-stable if it is orbitally 
stable uniformlv with respect to N when we use the norm 

While Definitions 1 and 2 are not formally equivalent, they are equivalent for the 
problem considered here, if an unbounded increase in Sk is not allowed (e.g., we put ~(s,z)EO 
outside the bounded domain Q). E.E. Vol'kov drew the author's attention to the problems whose 
mathematical evolution is dicussed in the present paper, and the author thanks him for 
numerous discussions. 
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